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A B S T R A C T  

If the terms of a trigonometric series tend to zero at each point of a set 

and if the smallest additive group containing that set has positive outer 
Lebesgue measure, then the coefficients of that series tend to zero. This 
result generalizes the well known Cantor-Lebesgue Theorem. Several other 

extensions of the Cantor-Lebesgue Theorem as well as some examples to 
demonstrate scope and sharpness are also given. 

1. I n t r o d u c t i o n  

The  convergence of a t r igonometr ic  series with par t ia l  sums 

implies tha t  

(:) 

$.(:c) = ~ cke ik= 
k = - n  

l lm ( c , e  'nz + c_ne - i n z )  = O. 
N " *  O 0  
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C The classical Cantor-Lebesgue Theorem asserts that if { -}.=-oo is a sequence 

of complex numbers with the property that (1) holds for every real number z in 

a set of positive measure then 

(2) lira c,  = lira c_,  = 0. 
n--coo n---+oo 

Thus, if the trigonometric series converges on a "large enough" set, the coefficients 

of the series necessarily tend to zero, so that the convergence in equation (1) 

cannot be due to cancellation between the terms c_,e  -i"" and c,e i" ' .  Theorem 

1 extends this result by weakening the hypotheses in two ways. On the one hand, 

the condition that the set where relation (1) holds have positive measure may 

be considerably relaxed. On the other hand, the assumption (1) itself may be 

lightened to the assumption that certain blocks of the form 

n + r  

E (e'ei'Z + c-'e-iYz) 
IP~li 

tend to zero on the "large" set. The conclusion (2) will still follow. Indeed, it 

is natural to ask if (9.) follows from the convergence of a trigonometric series on 

such a set E along a subsequence n i. If sup(hi - nj-1 ) is finite, then (2) follows 

as a special ease of Theorem 1, which yields both extensions of the classical 

result to which we have alluded. We begin by extending our notion of "large" to 

include certain sets of measure zero. For any set E, denote by gr(E) the smallest 

additive subgroup of R (the real numbers) containing E. If (1) holds on some set 

E with gr(E) having positive outer measure, then (2) follows. We provide some 

examples below of sets E of measure zero satisfying this hypothesis. Below, [E I 

will denote the Lebesgue measure of a set E. 

THEOREM 1: Let n i be an increasing sequence of  positive integers, and 

l imsupnj - nj-1  = : r < e~. Let 

n j + t  n j + l  

c,e"', c_,e-"'. 
y = n j + l  u = n j + l  

Suppose, for every z on a set E with gr(E) having positive outer measure, that 

(3) ai( ) + --, o. 

Then (2) obta/~s. 
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Remark: The hypothesis ~'gr(E) has outer measure zero" is not really much 

weaker than "gr(E) = R." For suppose that (3) holds on some set E with gr(E) 

having positive outer measure. We will show that the set of all points on which 

(3) occurs(call it E ' )  generates all of R. 

First of all, E'(= N~--1 {.Jn~--x Nv~=,{ z: IA~(z)+A-,(z)[ < -~}) is a Borel set, so 

that G := gr(E ~) is a Souslin (i.e., analytic) set, and consequently (see, e.g., page 

482 of [Kul), G is measurable. (Why use such a delicate argument here7 Because 

it is possible for the group of a Lebesgue measurable set to be non-measurable.) 

But E C_ E t implies gr(E) C G so G has positive measure. Since G is a group, 

G = G - G. From a theorem of Steinhaus (see, [Ox], p. 21 or [St]) showing that 

the set of differences of a set of positive measure contains an interval it follows 

that G contains some interval I. Next pick any two points of I and let d denote 

their difference. Then for any real i E I and any integer n, nd + i E G, so that 
o o  o o  

R =  0 n d + I =  ~ { n d + i : i E I J = G .  | 
n ~ n 

Again, the motivation for looking at A i + A-.i is that if {S.} is the sequence 

of symmetric partial sums of a complex trigonometrical series, and if (S.~ } 

is a subsequence of that sequence, then S.~+~ - S,~j = A i + A_ i. In partic- 

ular, convergence of the subsequence at a point x is a sufficient condition for 

limi_..= Ai(x ) + A_i(x ) = O. 

We will say that a set E has the C a n t o r - L e b e s g u e  P r o p e r t y  if (1) holding 

at each x E E implies (2). In other words, the classical Cantor-Lebesgue The- 

orem asserts that sets of positive Lebesgue measure have the Cantor-Lebesgue 

Property and specializing Theorem 1 to the case of block length r = 1 m o u n t s  

to saying that any set generating an additive group with positive outer measure 

has the Cantor-Lebesgue Property. 

An easy computation shows that a set E has the Cantor-Lebesgue property if 

and only if every pair of real sequences {a.},  {b.} satisfying 

(1') l i r a  (a. cos(nz) + b. sin(nz)) = 0 for all z 6 E 

necessarily satisfies 

(2') lim p .  = 0, 
n - ' ~ O O  

where p .  := ~ + b2.. We thus can restate Theorem 1 as 
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COROLLARY I~: Let 

nj+x 

c (x) : =  (a, sin( x) + b, 
vffin$ +1 

Suppose that l imsupnj - rt.i_l < co and that limj.-,oo Cj(z) = 0 for a / /z  in a 

set E with gr(E) having positive outer measure. Then (2') obtains. 

Corollary 2 below gives a version of Theorem 1 adapted to the situation in- 

volving Cesaro summability of order a, where a > -1 .  Examples 3 and 4 give 

some insight into the extent to which Theorem 1 generalizes the classical re- 

suit. In particular, sets of second Baire category and many sets of Cantor type 

have group equal to the real numbers. Example 5 shows that the very strong 

growth restriction on the block length in Theorem 1 cannot be relaxed at all. 

Example 6 shows that the Cantor-Lebesgue Property is not enjoyed by all un- 

countable sets. Proposition 7 shows that Theorem 1 is not a characterization; 

a set may have the Cantor-Lebesgue Property even though its group has zero 

measure. Theorem 8 helps unify the Cantor-Lebesgue theory and the theory 

of absolute convergence of Fourier series by simultaneously generalizing a result 

of Zygmund(which generalizes a theorem of Niemytski which in turn generalizes 

the Denjoy-Lusin Theorem) on absolute convergence and the Cantor-Lebesgue 

Theorem. Finally we define the Absolute Convergence Property and comment 

on its relation to the Cantor-Lebesgue Property. 

We were initially attracted to this subject by the very interesting Remark 2 

on page 561 of a nice survey paper by R. Cooke [Co]. 

2. Resul t s  

Proof of Theorem 1: First, we can without loss of generality assume that 

gr(E) = R, by replacing E by the set E ~ mentioned in the Remark above if 

necessary. 

Next, we reduce the proof to the case of bounded coefficients cv. If (3) did not 

imply (2) for a particular sequence {cv}, then we would construct a new sequence 

{d~} bounded by 1 for which (3) would hold but (2) would not, as follows. For 

each v satisfying nj + 1 _~ Iv[ < nj+l (j = 1, 2, . . .  ), let 

Cv 

d. = max{I, maxn +1_<IkL<.j+,{Jckl}}" 
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Then (3) still holds with {c~} replaced by {d~} although 

0 < limsup [d~[ = min{limsup Ic~l, 1} < 1. 
i ~N ,  oo i~D--.oo 

Also note that (2) must also fail for {d~) if it does for {c~). Since the {d~} are 

bounded, there is an s E {0,1 , . . .  , r - 1} such that there is a subsequence on 

which Aj(z)  and A_i(z)  have exactly s + 1 terms. Along this subsequence 

Ai(z) = P.~(x)e i('~+')* A_j(x) = Q.i(x)e -i('+"~+1)~ 

where Pn~ and Q.~ are trigonometric polynomials of degree s. 

Think of the coefficients of the polynomial pair (P.~, Q.~ ) as a point of C 2~ 

Since this sequence of vectors lies in a compact set, it has a convergent subse- 

quence. In other words, there is a subsequence of {nj}, call it {nj} again, and 

trigonometric polynomials P(x) and Q(x) so that for all x 

lim Pnj (x) = P(x) and lim Q.j  (x) : Q(x). .i--,oo j--,oo 

Along this sub-subsequence we have from (3) that 

lira P(x)e  i("i+l)* + Q(x)e - i (" i+ '+l)z  = 0 
j--*oo 

on E. Further, if (2) does not hold, we can assume for this choice of s that the 

limiting polynomials are not identically zero. Thus (assuming without loss that 

E does not contain any zeros of P(x)  or Q(x)) we have that on S 

r P(x) i(2.~+o+2). l m  ~ e  = - 1 .  
j--oo Q(z) 

In particular, the ratio of 2 successive terms of the left side must tend to 1. In 

other words 

(4) lime 2~("~+~-"i)~ = 1. 
j--*oo 

Since any element of gr(E) may be obtained from finite sums and differences 

of elements in E, relation (4) holds in fact for all elements of gr(E), by the 

multiplicative property of the exponential function. But gr(E) = R so that,  

in particular, (4) holds on the interval [0, 27r]. Hence by Lebesgue's Dominated 

Convergence Theorem 

;ira ~0 2~ e2i("~+1-~D~dz = 2,r, 

which is impossible since the integral inside the limit is O. | 
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COROLLARY 2: Suppose Cne i"'+e-ne-in" is (C, a) s,,mmable to 0 on E, a > - 1, 

and that gr( E) has positive outer measure. Then 

Ic=l § I t - h i  - o ( n " ) .  

Proof." It suffices to consider the real part. If Tn = {an COS(nZ) + b,, sin(nz)} 

is (C, a) s,,,~mable to 0, then ([Zy], p. 78) Tn = o(n~ Replacing a,,, an, pn 

with (respectively) an/n ~, bn/n ~, pn/n ~ , we see that it suffices to prove that 

2", ~ 0 on E and gr(E) having positive outer measure imply that p,, --* 0. | 

Remark: One might suppose that Corollary 2 could be strengthened so as to 

conclude that pn is (C, a) summable to zero. Such a conclusion is in general 

false, however. Consider T0(x) = ~; Tn(x) = cos(nx) (n > 0). Then (Tn(x)} is 

(C, 1) summable to 0 for all x # 0 on [ -% ~r) but pn = ~ (n > 0) so that 

{pn} is (C, 1) summable to V ~  (and not 0 ) . | 

That Theorem 1 actually generalizes the classical result may be seen by con- 

sidering the following examples of sets of measure 0 which generate a group of 

positive measure, namely, the real numbers. 

Example 3: The set of differences of any set of the second category (in the sense 

of Baire) contains an interval [Ox], p.21. There are of course sets of the second 

category that have measure zero. Young [Yo] had obtained the generalization of 

the Cantor-Lebesgue Theorem when E is the complement of a set of the first 

category. 

Example 4: A set E of Cantor type with constant ratio of dissection 

(0 < ( < !)  is defined as 

E : =  . 
k=l 

The classical Cantor set corresponds to ( = 1/3. All such sets have measure 0. 

Nevertheless, for any such set E, gr(E) = R [Ka], p. 566. 

Remarks: One might wonder if the hypothesis that gr(E) have positive outer 

measure gives Theorem I any more scope than the stronger, but simpler, hypoth- 

esis that the set of differences of elements of E contains an interval. However, 

when ( < ~, the set of differences does not fill an interval. 
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We remark in passing that "thin" Cantor sets, obtained by allowing the ratio 

of dissection to decrease to 0 (see [Zy], p.195, for the definition of sets of Cantor 

type with variable ratio of dissection), will generate groups of measure zero [KS], 

p. 103. See [Ka] for generalizations. We do not know if thin Cantor sets have 

the Cantor-Lebesgue Property. 

There is yet another kind of "thin" set whose group is R. These sets were 

discovered independently by Mirimanoff who called them perfect sets of the "1TM 

esp6ce," and by Denjoy who called them sets "pr~sentant le caract6re (A)." See 

[Mi] for a definition. | 

Suppose now that lim sup(nk - nk-~) = c~. The following example (cf. [Ba], 

IV, w exercise 9) shows how badly the conclusion of Theorem 1 can fail. 

Example 5: Let n i be an increasing sequence of integers such that  

lira s u p ( n / - n j _ l )  = oo and e > 0 be given. Then we construct a trigonometric se- 

ries S(z)  such that S , i ( z  ) converges uniformly on [ 0 ,2 ~ r -  e] and 

limsup(Icil + Ic-jl) = 

Let 0 < fk be a C ~ function with support in (27r - e, 2~r) and ~ f fk = k 
N~ and let Pk(z) = ~ = - N ~  c(~)ei~X be a partial sum of the Fourier expansion of 

f~ chosen so that  for every x E [0, 2a" - e] we have ]Pk(x)l < 1/k 2. Find a 

gap big enough to hold P1, i.e., find the first nj satisfying nj - nj-1 )> 2N1; 

and then multiply P1 by an appropriate character to slide it into the gap, i.e., 

e~(n~-~+l+N1)*Pl(z) has all of its frequencies in the interval [nj_~ + 1, hi]. Next 

find a gap big enough to hold P2 and slide P2 into that gap, and so on. The 

resultant series will have the form ~ = ]  e ira' ~Pk(z). Our construction guarantees 

that any subsequential partial sum will consist only of complete unbroken blocks. 

By the Weierstrass M-test, Sn, (x) converges uniformly on [0, 2rr - e] but (since 

c~ k) = k) the coefficients of S are unbounded. 

One might be tempted to conclude that if (1) holds on an uncountable set, 

then (2) must follow. However: 

Example 6: There is an uncountable set not enjoying the Cantor-Lebesgue 

that  ni n~- i  Property. For each i = 1 , 2 , . . . ,  let ni := 2 , so - = i. 

Then the sequence {sin(2n~z)} converges to zero uniformly on the uncountable 

set E := {21r(0.e10e200es000e4...): e, E {0,1} for all i}, where 0.e,0e200... := 
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~-~i~176 ei2 "~ is a binary decimal expansion. For notice that 

2"'(0 .e l0e~00. . .  ) - 0 . 0 . ~ e i + l  . . .  
i z e r o s  

so whenever x = 27r(0.e10e2 . . .  ) E E, 

(mod 1); 

[ sin(2"'x)l = [ sin(27r(0.ei+10... )2-i)1 _< 127r(0.ei+10... )2-il < 27r2 -i .  

Remark: The gaps in the expansion defining E were picked with simplicity in 

mind. What  really matters is that the gap length ni - ni-1 is nondecreasing to 

co. In particular a "fatter" example can be created by having the gap lengths 

tend to oo very slowly. Nevertheless, any such example will still generate a group 

of measure 0 by virtue of Theorem 1. | 

Example 7: A set may enjoy the Cantor-Lebesgue Property even though it 

generates a group of measure zero. Any classical Salem set will do. On page 

132 of [Va] the author observes that such a set K C [0, 2~r) has the following 

properties: It is closed, it generates a group of measure 0, there is a positive 

measure d# supported on K with f : ~  d# = fK d# = 1 and/~(n) --* 0 as In[ -* co. 

As in the proof of Theorem 1 we may assume that {cn) is a bounded sequence 

and that (1) holds for each x E K. The formula f~(-m) = ~ f ei'~Zd#(x) and 
the identity Izl 2 + Iwl 2 = [z + w[ 2 - 2~(zz~) lead to 

Ic.I ~ + Ic_.l  ~ = / ~  (Ic.I ~ + l e - . l~ )d~  

= fK [c"e'"= + c - n e - i n Z l 2 d #  - 47rR(cne-n/ (-2n)). 

As n -* co, the first term on the right tends to 0 by Lebesgue's Bounded Conver- 

gence Theorem while the other tends to 0 since {c,} is bounded and p(n) - .  0 

as In[ - .  co. Thus the left side tends to 0, which is equivalent to (2). 

Remark: On page 370 of [Zy] appears the following interesting theorem. Given 

any set E of positive measure and any integer m > 1, there is a positive number 

= 6(E, m) such that for every sum Cle iplz +c2eip2z+ .. .+eme ip'~z with integral 

Pl < P2 < "'" < P m  w e  have 

~r8 m 

fE I c'e""l a  >- 6 Ic'l " 
s = l  s = l  
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Roger Cooke observed that this result yields a block version of the Cantor-  

Lebesgue Theorem similar to Theorem 1, but only for sets of positive measure. 

Zygmund's result can be generalized to prove a block version of the Cantor-  

Lebesgue Theorem for Salem sets. | 

The next Theorem extends a result of Zygmund given in [Zy] (cf. VI, 1.12) 

on the absolute convergence of trigonometric series. Recall that  the problem of 

interest in this connection is to determine the convergence behavior of 

:~-~'~(lakl + Ibkl) 
k = l  

when 
oo ~_~lakcos(kx)+bksin(kx)l < ~ for a l l x  ~ E .  

k = l  

The result alluded to above asserts that when gr(E) = R, convergence of the lat- 

ter series implies that  of the former. (For the genealogy of Zygmund's Theorem, 

see page 380 of [Zy].) Theorem 8 may be construed as a generalization of this 

fact. It also yields our extension of the Cantor-Lebesgue Theorem (Theorem 1) 

in the case r = 1 as is remarked after Lemma 9 below. 

THEOREM 8: Let ak >_ 0 and ~ ak = c~. Suppose that there exist sequences 

{nk}, {Sk} such that/'or a/l z in a set E, 

N N 

aklsin(nkx + 0k)[ = o(~-'~ aD. 
k = l  k~-I 

Then gr(E) has measure 0. 

We begin with a lemma that  shows Theorem 8 to be an extension of the 

Cantor-Lebesgue Theorem. 

LEMMA 9: If  E does not have the Cantor-Lebesgue property, then there exist 

sequences {nk}, {e~} such that sin(nkx + Ok) - ,  0 on E. 

Proof." We suppose that  (1') holds for all z E E and that limsupp,, = 2c > 0. 

There is then a subsequence with p.~ > c for all k. For each k, pick 0k satisfying 

cos(0k) = b . , / p . , ,  and sin(0k) = a . , / p . k .  Then 

Isin(n,z + 0k)l =[p-~-h[a.,cos(n,z)+b.,sin(nkx)] 
_<l In,,, cos(nkz) + b,,. sin(n~z)l, 

C 
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the last expression tending to zero for all z in E by hypothesis. | 

Remarks: This result can be strengthened as follows. First, we can assume that  

the 0k converge to O (by passing to a subsequence). Then write sin(nkz + 0) = 

sin(ritz + 0t) + {sin(nkz + 0) - sin(nkz + Ok)}, and note that sine is a uniformly 

continuous function to get that sin(nkz + 0) converges to 0 on E. Now choose a 

subsequence of the nk so that rnk := nk - nk-1 increases to infinity. Writing 

s in(mix)  = sin((nkz + 0) - ( n k - l z  + 0)) 

and applying the sine addition formula then shows that we can conclude that  

for E not having the Cantor-Lebesgue property, there is a sequence rnt so that  

sin(mkx) ~ 0 for every z in E.  If E is also closed, it will be called an A-se t ,  as 

in [BKL]. 

Note that  by virtue of Lemma 9, Theorem 1 in the case r = 1 follows as a 

Corollary of Theorem 8 by setting all a t  = 1. | 

Proof of Theorem S: Define 

N 2 E a t ,  f o r a l l N _ > J  , E[J]:= z: E a k l s i n ( n t z + 0 t ) [  < ~ r ( 2 r + l )  k=l 
kffil 

where r is a positive integer. Let E (r) be the set of numbers of the form Sl + 

�9 .. + 8r - tl  . . . . .  tr ,  where si, ti are in E.  Since E = U E[J], and for all J ,  

E [ J I c E [ J + l l ,  E ( r ) = l J E [ J ]  ( r ) .Let  E ,  = {81=l: . . .  + sm: m _ < n ,  si G E }  

and observe that  gr(E) = U E , .  Also, note that 

n m II ~II 

E . =  U U A,m:= U , . . . . .  

m = l  r = 0  m = l  r=--0 

and E (m) = Arm - Arm for any r (where S - S is the set of all differences of 

elements of the set S). We may thus conclude that for measurable E,  [gr(E)[ > 0 

if and only if [E,[ > 0 for some n if and only if [E(")[ > 0 for some n. (Curiously, 

we neither assert nor require that IJ E (") = gr(E).)  It thus suifices to show t h a t  

m = I E [ J I ( " ) I  = 0 ,  for every r. 

Suppose that  m > O. Let w E E[J] (r), so that  w = 81 + . . .  + S r  - t l  . . . .  tr,  

with si, ti G E[J]. Since the sine addition formula implies [ sin(r + . . .  + r  _< 

E I sin(r we have 
r 

(5) I sin(nkw)l < ~ I sin(,',t,i + S,,)l + I sin(,',kti + Ok)l. 
, i - - I  



Vol. 84, 1993 T H E  C A N T O R - L E B E S G U E  P R O P E R T Y  189 

With N _> J,  we multiply equation (5) through by ak, sum from k = 1 to N and 

can obtain 

N N 2 
(6) ~ ak[ sin(n}w)l _< 2r. (2r + 1)~ ~ ak 

k--1 k----1 

by changing the order of summation and applying the defining relation of E[J] 
2r times. Setting 

~k = / I sin(,,kx)l, 
JE [j](o 

we obtain from equation (6) 

N 2 N 
(7) E a~I~ < 2mr.(2 r + l)Ir E ate. 

kffil k = l  

Since for any measurable set F, lim,_oo f~[sin(nz)ldx = -~[F[ (see, e.g., Theo- 

rem 4.15 on page 49 of [Zy]), there is k0 so that 

(8) Ik _> 2~(1 -- e), for k > ko, 

where we take e = 1/(2(2r + 1)). Now choose N _> k0 so large that 

N 

E ~ 
k<ko kffil 

We then compute 

N 2 2 
a k = ~  E a k + I r  Ea k-<  (by (8)) 

k = l  k<ko k>_ko 

2 
-m  E a~ + E (ak(Ik + 2m~)) < (by the positivity of m) 

k<ko k>_ko 

2 -., ~., + ~ (.k(x. + 2)) + ~ .ka < (by (9)) 
k<ko k~ko k<ko 

9. N 2 N N 

k = l  k----1 k-----1 

N N 2 
- m ( ~ - : 7  + .k = 
"/I ~ l  - ] - &  

kffil kffil 
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the last equality by the choice of e. This contradiction shows that m = 0, as 

desired, for any choice of J, r. This completes the proof. | 

Say that a set has the A b s o l u t e  C o n v e r g e n c e  P r o p e r t y  if the absolute 

convergence of a trigonometric series at each point of that set implies that the 

sum of the absolute values of the coefficients is also convergent. On the other 

hand, a closed set E is an N-set if there is a sequence {c,} so that ~ [cn sinnx[ 

converges for all x E E, although ~ Ic,[ = r Notice that N-sets do not have 

the Absolute Convergence Property. 

Remarks: Theorem 8 might lead one to conjecture that a set has the Abso- 

lute Convergence Property if and only if it has the Cantor-Lebesgue Property. 

This, however, is not the case. If E is an A-set (cf. Remarks following Lemma 

9), there is a sequence {nk} such that for every z e E, [sinnkx] ~ 0. By 

Lebesgue's Bounded Convergence Theorem, for every measure # in the dual of 

C(E), limk--.r162 sinnkz[,#) = ~amk..-,oo f I sinn~xldp = 0, i.e., 0 is a weak limit 

of {I sinnkxl}~~ in L~176 Mazur's theorem then asserts that 0 is in the norm 

closure of the convex hull of this sequence [KL], p.169. We thus can find non- 

negative numbers a~l so that E~~ a~l = 1 and supE E~~ akll sinnkzl < 2 -1. 

Moreover, for each j > 1, 0 is also a weak limit of the sequence {I sinn~zl}~~ 

so that we may find a nonnegative sequence akj so that Y]~=j akj = 1 and 

supE~'fjakjlsinnkzl < 2-J. Thus, for every = in E, E~flcklsinnkxl < 1 
k where ck := ~ j = l  akj. Since ~ ck = ~"]~j ~ k  akj is dearly divergent, we con_ 

elude that E is an N - s e t .  The family of A-sets is complete I2~, while the family 

of N-sets is not [BKL]. Thus there is a dosed set having the Cantor-Lebesgue 

Property, but  not the Absolute Convergence Property. 

The class of Dirichlet sets ([KL], p.338) is related to these sets, and is rather 

simple topologically. | 
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